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Abstract

Optimal deconvolution (ODC) utilizes the footprint overlap in microwave observations to estimate the earth’s brightness temperatures (TB).

This paper examines the accuracy of ODC-estimated TB compared with a standard averaging technique. Because brightness temperatures

cannot be independently verified, we constructed synthetic True TB for accuracy assessment. We assigned TB at a high spatial resolution (1

km) grid and computed the True TB by spatial averaging of the assigned TB to a lower resolution earth grid (25 km), selected to match the

resolution of products generated from the Advanced Microwave Scanning Radiometer for the Earth Observing System (AMSR-E). We used the

sensor antenna response function along with the 1-km assigned TB to generate synthetic observations at AMSR-E footprint locations. These

synthetic observations were subsequently deconvolved in the ODC technique to estimate TB at the lower resolution earth grid. The ODC-

estimated TB and the simple grid cell averages of the synthetic observations were compared with the True TB allowing us to quantify the

efficacy of each technique. In areas of high TB contrast (such as boundaries of water bodies), ODC performed significantly better than

averaging. In other areas, ODC and averaging techniques produced similar results. A technique similar to ODC can be effective in delineating

water bodies with significant clarity. That will allow microwave observations to be utilized near the shorelines, a trouble spot for the currently

used averaging techniques.
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1. Introduction

Satellite microwave radiometer observations may be

expressed as convolutions of the sensor antenna response

function with the earth’s brightness temperature (TB) field,

integrated over the sensor footprint. However, in many

applications, these observations are treated as point measure-

ments and are averaged (Njoku, 2004; Njoku et al., 2003) to

produce gridded spatial representations of the observed TB at

coarser resolution than the spacing of the observations.

Because adjacent observations have significant footprint

overlap, averaging the observations in this way leads to

smoothing of surface boundaries and obscures small surface

features. Stogryn (1978) utilized the overlap to estimate
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observational data at locations within the overlap, using a

deconvolution approach to match the antenna response func-

tions of adjacent observations. Poe (1990) presented an optimal

interpolation method based on the Stogryn technique. The

focus of that research was to optimally interpolate the

observations using the information in the overlap without any

spatial resolution enhancement. Farrar and Smith (1992)

matched observations made at different frequencies in a

multi-frequency analysis to obtain higher resolution observa-

tions. Robinson et al. (1992) and Mo (1999) presented similar

techniques to increase the spatial resolution as well as to apply

antenna pattern corrections. All of these investigations focused

on antenna pattern matching to optimally generate observations

at other earth surface locations, not on an earth grid. By

contrast, the focus of this study is deconvolution of microwave

observations to produce more accurate brightness temperatures

on an earth grid. We hypothesize that the accuracy of

estimation of radiometer TB at a specified grid resolution can
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be improved by application of an optimal deconvolution

(ODC) technique.

Limaye et al. (2004) explored an ODC technique for

airborne radiometer data collected during Soil Moisture

Experiment 2002 (SMEX02, Cosh et al., 2004). In that

study, the authors used data from Passive and Active L and

S band radiometer (PALS; Wilson et al., 2001), and showed

that the ODC technique results in significant improvements

over the conventional techniques with mean absolute and

root mean square error reductions of approximately 60%

and 50%, respectively. During SMEX02, PALS was used to

scan along track only and the authors did not need to

account for the azimuthal variations in the data. The work

presented in this study generalizes the approach taken earlier
Fig. 1. Location and land cover cl
by the authors (Limaye et al., 2004) to account for the

complexities presented by the azimuth variations in the data

collected by conically scanning radiometers. Accurate

estimation of TB is critical for many applications including

retrievals of soil moisture, sea ice extent, and snow cover

(Cavalieri et al., 1997; Crosson et al., 2005; Laymon et al.,

2001).

In order to evaluate the accuracy of ODC-estimated TB with

respect to a benchmark method (Averaging), it is necessary to

compare brightness temperatures estimated using both methods

to the Ftrue_ or known TB at this scale. Use of actual AMSR-E

TB observations will not permit this type of evaluation because

the TB observations represent the convolution of the surface TB

field and the antenna gain function, therefore the Ftrue_ mean
assification of the study area.
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TB for a specified region on the Earth’s surface is not

recoverable from the measurements. We have chosen to

generate synthetic TB fields over a large central U.S. domain

in order to perform this evaluation. Using this approach also

allows testing of the ODC technique under various assump-

tions regarding the spatial nature of TB.

2. Study area

The domain covers the eastern portions of the Great Plains

states eastward to the Midwestern U.S., including the western

extent of Lake Superior (Fig. 1). The land cover at 1-km spatial

resolution (National Land Cover Dataset (NLCD), Vogelmann

et al., 1998) is also shown. The dominant land cover classes in

the southwestern corner of the domain are grasslands and

pasture/hay. The central portion of the region primarily

comprises of row crops. In the northeastern area there is a

mix of forests, open water and wetlands. Approximately 4.2%

of the entire study area is open water, almost all of which is

concentrated in the northeastern region. Areas in yellow

indicate urbanized land uses.

3. Optimal deconvolution

3.1. Oversampling of microwave observations

The basic premise of the ODC technique (Limaye et al.,

2004) was to utilize the overlap in adjacent microwave

radiometer observation footprints. Adjacent observations cover

mostly the same target features on the ground (e.g., grid cells),

but with different contributions to the overall signal. That

overlap can be effectively utilized to more accurately estimate

the TB of those grid cells. Typically, the observations far

outnumber the grid cells (for which we want to estimate the

unknown TB). Because there are more equations than

unknowns, the system of equations does not have a unique

solution. The optimal deconvolution technique is one way to

arrive at the optimal solution.

Knowing the sensor characteristics (altitude, incidence

angle, half power beam width and the shape of the sensor

antenna response function), we can map the region from

which the energy was received. The spatial characteristics of

the function vary for each sensor. We have assumed a

Gaussian response function for the purpose of this study,

given by:

P rð Þ ¼ 1

r
ffiffiffiffiffiffi
2p

p e
�r2

2r2 : ð1Þ

The shape of the function is defined by r2 and can be

computed knowing the half power beam width. The power P in

Eq. (1) is at the radial distance r on the beam-normal plane. In

most microwave radiometer applications, the sensors are

positioned at non-nadir angles, and therefore the beam-normal

plane is not coincident with the earth surface. It is therefore

necessary to project the grid points from the earth’s surface

onto the beam-normal plane.
3.2. Projections to the beam-normal plane

If the origin of our 3-D space is the location where the beam

intersects the ground, the sensor location can be given by (Xs,

Ys, H), where H is the altitude of the sensor. If the sensor

incidence angle is h and the sensor azimuth angle is /, then

Xs ¼ H tan hð Þcos /ð Þ ð2Þ

Ys ¼ H tan hð Þsin /ð Þ ð3Þ

The equation of the plane going through the origin and

normal to the beam is given by

XsX þ YsY þ HZ ¼ 0: ð4Þ

Substituting the sensor location into the equation above

gives

tan hð Þcos /ð ÞX þ tan hð Þsin /ð ÞY þ Z ¼ 0: ð5Þ

Any point (X1, Y1, 0) on the earth surface can be projected

onto the beam-normal plane by solving Eq. (5) and the

parametric representation of the vector from the sensor

location (Xs, Ys, H) to the point on the horizontal surface

(X1, Y1, 0). The projected point on the beam-normal plane is

given by

Xp ¼
X1Ys � XsY1ð Þsin/ þ X1Hcoth

Xs � X1ð Þcos/ þ Ys � Y1ð Þsin/ þ Hcoth
ð6Þ

Yp ¼
XsY1 � X1Ysð Þcos/ þ Y1Hcoth

Xs � X1ð Þcos/ þ Ys � Y1ð Þsin/ þ Hcoth
ð7Þ

Zp ¼ � HX1cos/ þ Y1Hsin/
Xs � X1ð Þcos/ þ Ys � Y1ð Þsin/ þ Hcoth

ð8Þ

The distance from the point (Xp, Yp, Zp) on the beam-normal

plane to the origin is then given by:

r ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
X 2
p þ Y 2

p þ Z2
p

q
: ð9Þ

3.3. Creation of AMSR-E synthetic TB observations

Eqs. (1) and (9) define the sensor antenna response

function on the horizontal surface. As described later in

Section 4, we generated four different synthetic surface

brightness temperature fields over the study region. In order

to simulate remote sensing observations based on these TB

fields, we use this sensor antenna response function (hereafter

called the weighting function) to numerically integrate energy

received at the sensor. This step is referred to as convolution.

These synthetic TB observations are intended to simulate level

2A observations from NASA’s Advanced Microwave Scan-

ning Radiometer for the Earth Observing System (AMSR-E).

In processing of the AMSR-E data, level 2A observations are

averaged by the AMSR-E operational algorithm. For averag-

ing, the algorithm uses a grid called the EASE grid defined

by National Snow and Ice Data Center (NSIDC, 2002).

Averaging of level 2A observations centered over each 25 km



Table 1

Baseline brightness temperature values specified for each USGS National Land

Cover Dataset (NLCD) land cover class

Landcover class TB (K

Open water 175

Low intensity residential 270

High intensity residential 250

Commercial/industrial/transportation 250

Bare rock/sand/clay 250

Quarries/strip mines/gravel pits 250

Transitional 250

Deciduous forest 290

Evergreen forest 290

Mixed forest 290

Shrubland 270

Orchards/vineyards/other 270

Grasslands/herbaceous 270

Pasture/hay 270

Row crops 275

Small grains 260

Fallow 250

Urban/recreational grasses 270

Woody wetlands 270

Emergent herbaceous wetlands 270
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EASE grid cell produces level 2B TB for that cell, and is

subsequently used to produce the remotely sensed soil

moisture estimate at that EASE grid cell (Njoku, 2004). In

this study, we use the same EASE grid for the analysis. For

the generation of synthetic TB observations, we used a 1 km

land use dataset nested within each 25 km EASE grid cell.

We use the actual observation locations from an AMSR-E

overpass and the associated sensor orientation geometry for

this analysis. The TB data associated with the observation

location was derived from the assignments at the 1-km grid

(described in detail in Section 4).

In real world application of the ODC technique, actual

observations would replace the synthetic observations. The

only information needed for the use of ODC technique with the

actual level 2A AMSR-E observations would be the sensor

geometry (incidence angle, earth azimuth angle, altitude,

geolocation of the beam intersection on the ground).

3.4. Optimal solution

In order to deconvolve synthetic TB observations to produce

gridded brightness temperatures on the earth’s surface, we

overlaid the weighting function onto the EASE grid cells. A

critical element in this analysis is the estimation of the

fractional contribution of each EASE grid cell to the overall

observation. It is computed by integrating the volume under the

Gaussian response function for each EASE grid cell within the

spatial extent of the weighting function. Adjacent observations

convolve from similar EASE grid cells, but have different

fractional contributions from each of the EASE grid cells.

Typically, 25 to 29 EASE grid cells contribute to an
Fig. 2. Graphical representation of AMSR-E sensor antenna response function’s spatial extent (shown as the oval with the black dot in the center depicting the beam

center location) in relation to the EASE grid cells and other AMSR-E observation locations.
)

observation in varying fractions. Given the large extent of the

sensor footprint (as can be seen in Fig. 2), the maximum

fractional contribution from an EASE grid cell to an

observation is approximately 0.14. In other words, the EASE

grid cell containing the observation contributed only 14% of

the total energy received for that observation. The Gaussian

surface extends to infinity, and for the sake of this analysis, we

ignore fractional contributions smaller than 0.001. Because the

sum of all the fractional contributions needs to be 1, the



Fig. 3. Baseline scenario comparing True TB with ODC estimated and Average TB.
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ignored fractional contributions are proportionately distributed

among the remaining cells.

Optimization is intended to solve for the TB for the EASE

grid cells, the unknown variables in this analysis. The known

quantities are the observations (synthetic in the case of this

study, actual observations in real world scenarios) and the

fractional contributions from the EASE grid cells in that

observation’s field of view. The product of the fractional

contribution from each EASE grid cell with the unknown TB

for that cell is the TB input of that EASE grid cell to the

overall reconstructed observation. Integration of all such TB

inputs from individual EASE grid cells in the weighting

function results in estimation of the reconstructed observation.

Because the intended purpose of the reconstructed observation

is to reproduce the synthetic observation, we need to minimize

the difference between the two. The optimization problem is

given by:

Minimize
X
n

abs Reconstructed� Synthetic TBð Þ ð10Þ

where n is the number of observations. The equation for the

reconstructed observation serves as the constraint for the

minimization, given by:

Reconstructed Observation ¼
X

all EASEgrid cells in field of view

� Fractional Contributionð Þm T TBð Þm ð11Þ
where m represents the EASE grid cells in the observation’s

field of view. For the study area, which included about 1000

EASE grid cells, AMSR-E typically records about 6500

observations. In other words, there are 6500 reconstructed

observation equations for the 1000 unknown EASE grid cell

TB values. Thus, we have more equations than unknowns,

forcing us to use an optimization to solve for the unknown

variables. The minimization criterion forces the reconstructed

observations to be as close to the synthetic observations as

possible. Eqs. (10) and (11) form a system of linear equations,

an iterative solution of which results in the estimation of the

TB for the EASE grid cells (referred to here as ODC-estimated

TB).

Eqs. (6), (7), and (8) require the knowledge of sensor

azimuth angle (/) for each observation. It allows for

accounting for the azimuthal variability in the brightness

temperatures from grid cells. In real world analysis, it may

be desired to analyze the TB for specific azimuth angles in

order to isolate anisotropy in observations. While the analysis

presented here does not discriminate among TB from different

azimuth angles, it can be performed for selected azimuth angles

if desired.

4. Synthetic scenarios

We have generated four synthetic TB fields over the study

domain and used them to quantify the errors associated with
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the ODC and averaging techniques. In each case, TB values

were specified at the 1 km NLCD land cover grid scale nested

within the 25 km EASE grid. This 1 km grid TB is hereafter

called the Original TB.

4.1. Baseline

Brightness temperatures in the Baseline scenario are

determined by assignment based on NLCD land cover class.

The default brightness temperatures for all the classes are

shown in Table 1. These values were set to represent in a

general sense the typical C and X band TB differences that arise

from vegetation density differences between land cover classes.

The assigned TB range from 175 K for water to 290 K for

forest. In the three additional scenarios described below, TB

anomalies were superimposed on the Baseline TB values based

on specific patterns.

4.2. Gradient

In this scenario, a maximum TB anomaly of +25 K was

imposed at the northwest corner of the domain, and values

decreased linearly toward the southeast corner. The anomaly in

the southeast corner was �25 K. Anomalies were added to the

default TB values at each 1 km sub-grid cell. The northwest–

southeast gradient was designed to distinguish the effects of the

TB gradient from the grid orientation.
Fig. 4. Gradient scenario comparing True TB
4.3. Minimum

This case simulates a situation in which TB is at a minimum

at the center of the study area and increases with distance from

the center to maxima in the corners. At the center, a TB

anomaly of �15 K was imposed on the default TB values for

each land cover class at the 1 km scale. A TB gradient in both

ordinal directions was applied so that anomalies of +15 K were

realized on the edges of the domain directly east, west, north or

south of the center. Slightly higher anomalies were simulated in

the corners of the domain due to the greater distances from the

central point. This scenario could be considered analogous to a

mesoscale rain event in the middle of the study area.

4.4. Random

In this scenario, normal random deviates with a mean of 0

and a standard deviation of 10 K were generated and the

scenario was made more extreme by assigning one random

deviate for each EASE grid cell. Within an EASE grid cell, all

1 km cells were adjusted from the default TB using the random

deviate. No spatial autocorrelation in the random component of

TB was assumed between EASE grid cells.

We superimposed each TB scenario with an actual AMSR-E

overpass, i.e. the level 2A observation locations where the

beam intersects the ground for a typical day were used in a

comparison of the ODC and Averaging methods. For the
with ODC estimated and Average TB.
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analysis presented here, observation locations from the

ascending pass on June 25, 2002 were used. Fig. 2 shows

the elliptical area from which over 90% of the energy is

received at the sensor. The other black points are adjacent

AMSR-E beam center locations, the density of which illustrates

the significant overlap of the adjacent observations. The grid

shown is the AMSR-E EASE grid with a spatial resolution of

25 km, and the underlying NLCD data is on a 1 km high-

resolution grid nested within the EASE grid. Assuming a

Gaussian response function, we integrated the product of the

Original TB with the power (computed using Eq. (1)) to

Freconstruct_ the sensor observation. Using Eqs. (10) and (11),

we develop a system of equations to generate the reconstructed

observations. Simultaneous solution of this system of equations

generates the solution for the unknown EASE grid cell TB

(ODC estimated TB).

5. Results

We have evaluated the accuracy of ODC-derived TB in

comparison to the accuracy of one currently used methodology,

Averaging. In the current process, all the AMSR-E level 2A

observations within an EASE grid cell are averaged to produce

the level 2B product (Njoku, 2004). The level 2B product is

subsequently used in the soil moisture retrieval algorithm.

Similarly for this analysis, we computed the averages of all the

synthetic observations located within an EASE grid cell and
Fig. 5. Minimum scenario comparing True T
refer to this quantity as the Average TB. We compared ODC and

Average TBwith the True TB, computed as the average of the 625

1-km Original TB values within each EASE grid cell, allowing

us to assess the relative accuracies of the two gridding methods.

Figs. 3–6 provide the spatial representation of the four

scenarios considered in this analysis. Each figure consists of six

panels. The upper left panel is the Original TB at 1 km

resolution. The convolution at each AMSR-E observation

location is performed using the Original TB field to produce

synthetic observations. True TB (lower left panel), computed by

averaging the Original TB within each 25 km EASE grid cell, is

used to assess the accuracy of ODC-estimated TB as well as

Average TB. ODC estimated TB is shown in the upper middle

panel and Average TB is shown in lower middle panel. The

upper right panel shows the absolute error between True and

ODC-estimated TB whereas the lower right panel shows the

absolute error between True and Average TB.

In the absence of a land cover bias, an estimation technique

should exactly reproduce the True TB. If land cover bias is

removed (with completely random TB assignments in an EASE

grid cell), the ODC technique does indeed reproduce the True

TB (not shown here). However in reality, each EASE grid cell

is made up of discrete (and thus non-random) land cover

components with significant TB differences among the compo-

nents. Therefore the same EASE grid cell can have substan-

tially different TB contributions to observations looking at

different parts of the same EASE grid cell. The reconciliation
B with ODC estimated and Average TB.



Fig. 6. Random scenario comparing True TB with ODC estimated and Average TB.
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of these different TB contributions becomes an optimality

challenge.

Fig. 3 shows the Baseline scenario, in which default TB

assignments were made for each 1 km cell based on the NLCD

classes. It can be seen that the ODC TB reproduces the fine-

scale spatial representation of True TB better than the Average,

which presents a smooth field. ODC technique defined Lake

Superior in the northeast corner of the study area better than the

Average technique, which produces a diffused and larger

region of lower TB. The Mississippi River can be traced in the

Original as well as True TB panels, and can also be discerned in

the ODC estimated TB, whereas it is not visible in the Average

TB image. As shown in Table 2, the ODC technique produces

significantly lower mean absolute errors (MAE) than that for

the Average in the northern half of the region, which is

dominated by lakes (2.49 K for ODC technique as compared to

3.92 K for the Averaging technique). MAE is very slightly

higher in ODC (1.08 K) than in Average (1.05 K) in the

southern half of the study area, but that difference is not
Table 2

Mean Absolute errors for each scenario for the entire domain and the northern

and southern halves

Base Gradient Minimum Random

ODC Avg ODC Avg ODC Avg ODC Avg

All (K) 1.78 2.49 1.81 2.52 1.92 2.65 4.61 7.72

Northern half (K) 2.49 3.92 2.56 4.01 2.73 4.19 5.11 8.65

Southern half (K) 1.08 1.05 1.06 1.03 1.10 1.12 4.12 6.80
statistically significant. ODC technique performs substantially

better than Averaging technique in root mean square error

(RMSE) as shown in Table 3.

Fig. 4 shows the Gradient scenario in which a northwest–

southeast TB gradient is imposed. As in the case of Baseline

scenario, the water body and the river are better defined in the

ODC TB than in the Average TB. The mean absolute errors for

ODC are also lower than for Average TB in the northern half

and slightly higher in the southern half. Fig. 5 shows a

Minimum scenario, and the results are similar to the other two

scenarios. The ODC technique reproduced the details of the TB

minimum in the middle of the study area better than the

Average technique while still maintaining the ability to define

the river. Fig. 6 shows the Random scenario, in which a

random TB anomaly was added to the base TB for each cell.

ODC performs much better than the Averaging method in this

scenario over both halves of the study region.

Table 4 shows that the ODC statistics are better than the

Averaging technique for each of the four scenarios. The means
Table 3

Root mean square errors for each scenario for the entire domain and the

northern and southern halves

Base Gradient Minimum Random

ODC Avg ODC Avg ODC Avg ODC Avg

All (K) 2.99 5.94 2.99 6.04 3.26 6.44 6.00 10.37

Northern half (K) 3.95 8.25 3.96 8.40 4.32 8.96 6.64 11.90

Southern half (K) 1.53 1.58 1.50 1.54 1.59 1.67 5.29 8.56



Table 4

Means, ranges and standard deviations for True, ODC-estimated and Average TB over the study area, and r2 values for ODC-estimated and Average TB with respect

to the True TB

Base Gradient Minimum Random

True ODC Avg True ODC Avg True ODC Avg True ODC Avg

Mean (K) 270.9 270.9 270.9 271.7 271.2 271.1 275.3 275.3 275.3 270.8 270.8 270.8

Range (K) 111.2 127.2 102.5 112.5 127.5 105.7 121.3 136.1 109.9 131.6 140.2 105.9

SD (K) 13.5 14.2 10.8 13.8 14.5 11.1 14.5 15.2 11.5 16.5 16.5 11.2

r2 0.96 0.82 0.96 0.82 0.95 0.81 0.87 0.62
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for all scenarios are reproduced by both ODC and Averaging

techniques. The ODC technique has somewhat higher TB ranges

than the True TB field, whereas the Averaging technique has

lower ranges. The higher range for ODC technique is due to a

very small number of high or low ODC TB values due to

numerical instabilities near the boundaries of the study area.

Overall, ODC technique represents the statistical distribution

well as evidenced by the fact that the mean as well as the

standard deviation of the ODC TB is similar to that of True TB.

On the other hand, the Average TB has lower standard deviation

as well as a lower range compared to True TB. The r
2 between

True and ODC TB is also significantly higher than that between

True and Average TB. Over the entire study region, the statistics

for ODC technique are much better than the Average technique

(Table 4). In large part, the improvement can be attributed to the

northern half of the study area, which is dominated by water

bodies. High TB contrast between land and water allows the

ODC technique to define the boundaries much better than the

Averaging technique, leading to significantly lower errors in the

vicinity of water bodies, particularly Lake Superior. Table 3

shows a similar analysis done for RMSE. It can be seen that the

ODC technique produces even more pronounced improvements

over Average technique. For each of the four scenarios, ODC

technique generates about 50% of the RMSE as compared to the

Averaging technique for the entire study area.

A significant portion of the earth’s land mass is in proximity

of water bodies, especially in the context of the rather large

footprints produced by space-based microwave radiometers.

Analysis of radiometer data has always been problematic for

land areas adjacent to lakes and shorelines because of what is

commonly referred as contamination from the water bodies.

Results from the northern half of our study area demonstrate

the efficacy of the ODC technique under such conditions.

These results show that the ODC technique performs signif-

icantly better as measured by MAE and RMSE in the proximity

of water bodies. It allows for a sharper delineation of the water

bodies, while retrieving the data near the coastlines. The

technique performs with accuracy similar to Averaging for

region not dominated by water bodies as indicated by the

southern half of the study area.

6. Conclusions

Optimal deconvolution of microwave brightness temperature

observations provides better accuracy than a conventionally

used averaging technique when producing spatially gridded

images. The root mean square errors are reduced by about 50%
over the conventional technique under each of the four scenarios

considered. The improvement is greatest in the vicinity of water

bodies; in other areas the ODC technique performs similarly to

or better than the conventional averaging technique.

The ODC technique can be effectively used in producing

more accurate operational data products from a space-based

radiometer, but it will require efficient management of the

additional pre-processing computational burden placed by the

technique. One possible solution is to create a priori ‘‘maps’’ of

fractional contributions from the EASE grid cells in the

observation field of view. For use with a conical scanning

radiometer, these a priori maps will be a function of the earth–

azimuth angle. To ensure higher accuracy, the maps can also be

made a function of the placement of beam–center location

within a region of the EASE grid cell in which it falls. Use of

such methods to produce operational efficiencies and the

computational efficiencies gained need to be explored further.

Also, we have not assessed the possible sensor noise

amplification as a result of ODC technique. These issues need

to be addressed in detail before this technique can be used in

operational environments.

Accurate estimation of TB is critical for several applications

such as retrievals of soil moisture, sea ice extent as well as

snow cover. In sea ice extent analysis, the ODC technique will

be particularly helpful because of the large contrast between ice

and water at microwave frequencies. With regards to soil

moisture retrievals, the ODC technique may be significant in

achieving the stated accuracy goal of T4% soil moisture

retrievals (Entekhabi et al., 2004) from upcoming space based

missions (NASA’s Hydrosphere State (Hydros) mission, and

European Space Agency’s Soil Moisture and Ocean Salinity

(SMOS) mission). However, additional work needs to be done

to quantify the improvements.
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